1. The random variable X has a χ^{2}-distribution with 9 degrees of freedom.
(a) Find $\mathrm{P}(2.088<X<19.023)$.

The random variable Y follows an F-distribution with 12 and 5 degrees of freedom.
(b) Find the lower and upper 5\% critical values for Y.

1. (a) $\mathrm{P}(X>19.023)=0.025$ or $\mathrm{P}(X<19.023)=0.975$

$$
\mathrm{P}(X>2.088)=(0.990 \text { or } \mathrm{P}(X<2.088)=0.010
$$

$$
\therefore \mathrm{P}(2.088<X<19.023)=0.990-0.025 \text { or } 0.975-0.010 \quad \text { M1 }
$$

$$
=\underline{0.965}
$$

A1 3
(b) Upper Critical value of $\mathrm{F}_{12,5}=4.68 \quad$ B1

Lower Critical value of $\mathrm{F}_{12,5}=\frac{1}{\mathrm{~F}_{5,12}} \quad$ M1
$=\frac{1}{3.11}=0.3215 \ldots \quad$ A1 3
awrt 0.322

1. Many candidates were able to answer this question correctly but too many showed that they had not understood the F-distribution tables. A clear shaded and labelled diagram would have helped many candidates.
